<div dir="ltr">
<p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><b><font face="arial, sans-serif">EE Seminar Announcement </font></b></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><b><font face="arial, sans-serif"><a href="https://www.ee.columbia.edu/events/ee-seminar-designing-light-weight-deep-networks-diverse-image-restoration-tasks" target="_blank">Designing light-weight deep networks for diverse image restoration tasks</a></font></b></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><b><font face="arial, sans-serif">Prof. Se Young Chun</font></b></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><b><font face="arial, sans-serif">Time: 4-5pm, Oct/11/2024</font></b></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><b><font face="arial, sans-serif">Location: 750 CEPSR, Columbia University</font></b></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><b><font face="arial, sans-serif">Abstract:</font></b></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><font face="arial, sans-serif">Since
the advent of deep learning, image enhancement was one of the first
applications of it to outperform classical algorithms. Large models usually
perform better in image restoration tasks, but it is often desirable to achieve
excellent performance with small networks, especially for embedded systems. In
this talk, I will go over some of the works where my Lab has designed small
networks for diverse image restoration tasks such as progressive single image
deblurring model (ECCV 2020), all-in-one model for multiple degradations (CVPR
2023) and its extension to image demosaicing for modern non-Bayer image sensors
(ICCV 2023) as well as our recent work on pretraining-tuning architecture based
on LoRA, but with flexible ranks for efficiency (ECCV 2024).</font></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><b><font face="arial, sans-serif">Bio:</font></b></p><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><font face="arial, sans-serif">Se Young Chun received
his Ph.D. degree in Electrical Engineering: Systems from the University of
Michigan, Ann Arbor in 2009. He is currently a Professor in the Department of
Electrical and Computer Engineering and the Interdisciplinary Program in AI, Seoul
National University, South Korea. He is an associate editor of IEEE
Transactions on Image Processing and IEEE Transactions on Computational Imaging
as well as a member of IEEE Bio Imaging and Signal Processing Technical
Committee. He was the recipient of the 2015 Bruce Hasegawa Young Investigator
Medical Imaging Science Award from the IEEE Nuclear and Plasma Sciences
Society. His research interests include computational imaging algorithms using
deep learning and statistical signal processing for applications in medical
imaging and computer vision.</font></p><img src="cid:ii_m1limkkj0" alt="chun.jpg" width="330" height="467"><p class="MsoNormal" style="text-align:justify;margin:0in 0in 8pt;line-height:107%"><br></p></div>